

ACL-R WITH RISKY AND DIFFICULT ONSET ELDERLY PATIENTS (> 50 yo)

Hospital del Mar

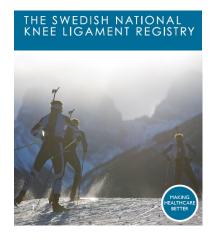
Joan C. Monllau

Hospital Universitari Dexeus (ICATME) Barcelona Spain

IS IT AN ISSUE?

POPULATION AGE

«MIDDLE AGE» ACTIVITY



Mall, AJSM 2014 Iorio, Int Orth 2018 Fayard, Orthop Traumatol Surg Res. 2019 Swedish National Knee Registry 2020

IS IT AN ISSUE?

- From 2005 to 2020
- Age category ACL-R incidence

PRIMARY ACL-R is INCREASING in > 40 yo

Swedish National Knee Ligament Registry 2020

		> 40 ye	ears	Total		
	Year	N	%	Ν	%	
1	2020	584	16	3650	100	
	2019	737	18	4016	100	
	2018	613	16	3769	100	
	2017	663	17	3852	100	
	2016	599	17	3591	100	
	2015	556	16	3481	100	
	2014	526	15	3420	100	
	2013	478	14	3453	100	
	2012	419	12	3527	100	
	2011	421	13	3339	100	
	2010	421	13	3351	100	
	2009	390	13	3074	100	
	2008	369	12	2977	100	
	2007	317	12	2747	100	
	2006	276	11	2498	100	
	2005	229	12	1989	100	
	Total	7598	14	52734	100	

CONSERVATIVE TREATMENT

RESIDUAL LAXITY

MENISCAL AND CARTILAGE INJURIES SPORT AND ACTIVITY REDUCTION

• INCREASED OA RISK

Aglietti, JBJS Am 2004 Kannus, JBJS Am 1987 Fitzgeral, KSSTA 2000 Strehl, J Trauma 2007

Frobell, N Engl J Med 2010

ACL RECONSTRUCTION

Paschos, EFORT Open Rev 2016 Frobell, N Engl J Med 2010 Asano, Arthroscopy 2004 Ekdhal, KSSTA 2004

SATISFACTORY CLINICAL & FUNCTIONAL OUTCOMES

WHICH SOLUTION?

SURGICAL TREATMENT SEEMS BETTER

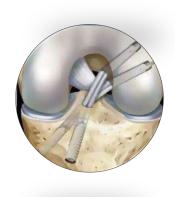
HOWEVER...

STILL OPEN QUESTIONS!

16 STUDIES, 470 ACL-R mean age 53.6 years (50–75 years) mean FU 50.4 months (2–240 months)

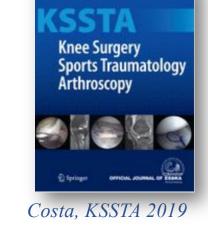
SURGICAL TECHNIQUE

ANATOMIC SINGLE BUNDLE (14/16)



Knee Surgery Sports Traumatology Arthroscopy

Costa, KSSTA 2019

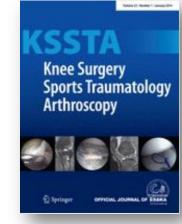

ANATOMIC DOUBLE BUNDLE
 (2/16)

GRAFT CHOICE

- **QUADRUPLED HT** 60.6% (261)
- BPTB 22% (95)
- ALLOGRAFT 17% (75)
 - PT 13% (65)
 - achilles (1)
 - tibialis post (1)
 - unspecified (8)

triang (1. Rooting 1. Jaco

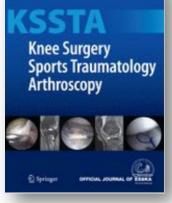
LOWER RISK OF EXTENSION LAG IN FUTURE TKA


GRAFT CHOICE

- QUADRUPLED HT 60.6% (261)
- BPTB 22% (95)
- ALLOGRAFT 17% (75)
 - PT 13% (65)
 - achilles (1)
 - tibialis post (1)
 - unspecified (8)

NO MORBIDITY OF DONNOR SITE

LESS POST-OP PAIN

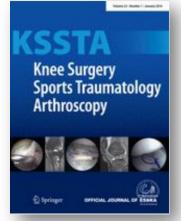

Costa, KSSTA 2019

VIABLE OPTION IN

LOWER DEMANDING POPULATION

FAILURE RATE

- HT vs BPTB → no differences
- ALLOGRAFT → slightly higher
- SIMILAR to YOUNGER Patients (0 14% vs 0 13%)



Tables (1. Rooter 1. Jonat

Costa, KSSTA 2019 Foster AJSM 2010

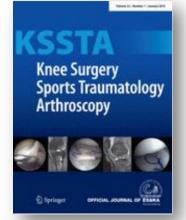
FUNCTIONAL OUTCOMES

- Lysholm, IKDC, Cincinnati→ significant post-op IMPROVEMENT
- **Arrow RTS** rate and recreational activities (up to 86%)
- Version RT PRE-INJURY level respect younger age if MENISCAL or CARTILAGE

Costa, KSSTA 2019 Osti, KSSTA 2011 Dahm, JBJS Br 2008

tears

BUT...


LOWER EXPECTATIONS IN OLDER PATIENTS DRIVES TO

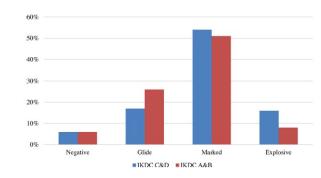
HIGHER SATISFACTION

OBJECTIVE OUTCOMES

- Positive LACHMAN in **9%**
- "GLIDE" OR "CLUNK" PIVOT SHIFT in 6%
- KT-1000 STS DIFF <3mm (0.2 2.7 mm) in 20%

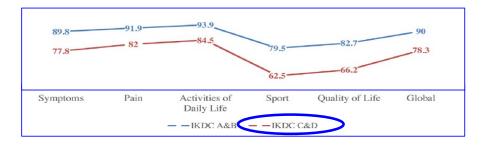
CONSERVATIVE ACL INJURIES→ KT-1000 STS DIFF > 5mm

Costa, KSSTA 2019 Osti, KSSTA 2011 Cicotti, JBJS Am 1994


BETTER than **CONSERVATIVE**

WHAT LITTERATURE SAYS? FRENCH EXPERIENCE

FACTORS AFFECTING OUTCOMES


- MULTICENTRIC STUDY, 398 pt, 42 MONTHS FU
- 68% HS / 32% BPTB
- POOR OUTCOMES (IKDC C/D) IN 23%
 - PRE-OP EXPLOSIVE PIVOT-SHIFT
 - MEDIAL OA SIGNs & MENISCI INJURIES

Fayard, OTSR. 2019

WHAT LITTERATURE SAYS?

OA PROGRESSION RISK

 OA prevalence in 50 yo after ACL-R up to 5.3 y FU→ 15% (28/187 knees)

Costa, KSSTA 2019

• **OA prevalence** in 30 yo (23-45.2) after ACL-R

up to 5 yrs FU**→ 11%** (4000pt)

Cinque, AJSM 2018

OA PROGRESSION RISK

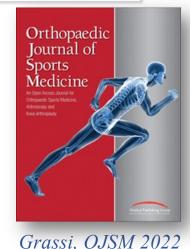
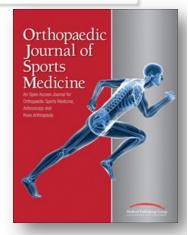

- HIGH RATE of OA Signs 20 y after ACL-R (13% severe OA)
- Risk Ratio of OA 2.8 (respect to contralateral un-injured knee)
- RISK FACTORS
 - Male
 - OLDER AGE at surgery
 - Delayed ACL R
 - MENISCAL & CARTILAGE lesion
 - Pivoting sports or strenuous activities

 TABLE 5

 Long-Term Risk-Factors for OA Development After

 Anterior Cruciate Ligament Reconstruction^a


Factor	Measure		
Age at surgery			
Per 1-y increase (from $23.2 \pm 6.9 \text{ y})^b$	OA moderate/severe: $OR = 1.06^{28}$		
Per 1-y increase	NS^{10}		
Adolescents vs > 18 v	NS^{27}		
Age OA (26.9 y) vs age non-OA (22.8 y) Age >30 y	OA presence: $P < .001^{23}$ OA presence: $P < .001^{10}$		

OA PROGRESSION RISK

- Outcomes of ACL R → FU minimum 20 y
- SIMILAR RATE of OA in operated & contralateral knee (28 vs 22%) in patients with intact menisci

Grassi, OJSM 2022

OA DEVELOPMENT due to PHYSIOLOGICAL AGING & SPORT PARTICIPATION

MY OPINION...

Do not leave an ACL injured knee in an active patient regardless the age

HIGH RISK OF MENISCAL & CARTILAGE LESIONS

6 months to 1 year Rehab / expectations

<u>Does every ACL deficient knee over 50</u> <u>needs regular ACL R ?</u>

WHAT ABOUT LET ?

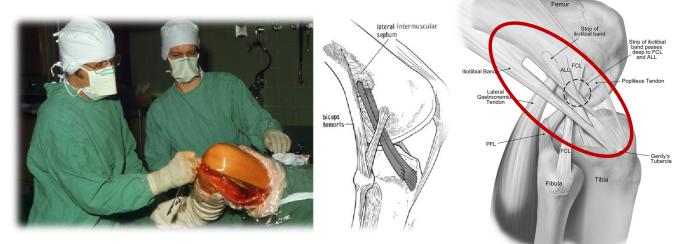
BEFORE 2000

Authors	Year	Country	Control	Experimental
Barber-Westin and Noyes ³⁴ Barrett and Richardson ³⁵	1993 1995	United States United States	Patellar tendon (n = 52) Patellar tendon (n = 38)	Patellar tendon plus Losee LET (n = 32) Patellar tendon plus ITB LET (n = 32)
Ferkel et al. ³⁷	1988	United States	Meniscus (n = 71)	Meniscus plus Ellison or modified Ellison LET ($n = 20$), Ellison with popliteal advancement ($n = 1$), or Ellison with advancement of ITB and popliteus ($n = 8$)
Goertzen and Schulitz ³⁸	1993	Germany	Hamstring $(n = 24)$	Hamstring plus Jäger-Wirth LET $(n = 32)$
Hefti et al. ³⁹	1982	Switzerland	Quadriceps tendon plus patellar tendon (n = 27) and patellar tendon (n = 25)	Carbon fiber combined with intra- and extra-articular over-the-top reconstruction $(n = 23)$
Lerat et al.43	1997	France	Patellar tendon $(n = 50)$	Patellar tendon plus quadriceps tendon LET ($n = 60$)
Noyes and Barber ⁴⁵	1991	United States	Patellar tendon allograft (n = 64)	Patellar tendon allograft plus ITB LET ($n = 40$)
O'Brien et al. ⁴⁶	1991	United States	Patellar tendon allograft (n = 32)	Patellar tendon allograft plus lateral sling of ITB $(n = 48)$
Paterson and Trickey ⁴⁷	1986	England	Patellar tendon $(n = 23)$	Patellar tendon plus ITB LET $(n = 17)$
Riel et al. ⁴⁸	1991	Germany	Patellar tendon (n = 31)	Modified Marshall-MacIntosh quadriceps and patellar tendon with polypropylene band (n = 50)
Roth et al. ⁴⁹	1987	Canada	Quadriceps tendon plus patellar tendon with polypropylene braid (n = 50)	(n – 50) Quadress tendon, patellar tendon, and polypropylene braid plus biceps femoris tendon advancement (n = 43)
Sgaglione et al. ⁵¹	1990	United States	Repair plus hamstring (n = 21)	Repair plus hamstring plus ITB LET (n = 51)

<u>AFTER 2000</u>

Study	Year	Country	Control	Experimental
Acquitter et al. ²⁶	2003	France	Patellar tendon ($n = 50$)	Patellar tendon plus quadriceps tendon LET (n = 50)
Anderson et al. ²⁷	2001	United States	Patellar tendon $(n = 35)$ and hamstring $(n = 33)$	Hamstring plus Losee LET $(n = 34)$
Giraud et al. ²⁸	2006	France	Patellar tendon (n = 34)	Patellar tendon plus quadriceps tendon LET (n = 29)
Kerschbaumer et al. ²⁹	1987	Austria	Patellar tendon (n = 13)	Patellar tendon plus Ellison LET $(n = 37)$
Trichine et al. ³⁰	2014	Algeria	Patellar tendon ($n = 60$)	Patellar tendon plus ITB LET $(n = 60)$
Vadalà et al. ³¹	2013	Italy	Hamstring $(n = 32)$	Hamstring plus Cocker- Arnold LET (n = 28)
Zaffagnini et al. ³²	2006	Italy	Patellar tendon $(n = 25)$ and hamstring $(n = 25)$	Marcacci hamstring plus lateral sling (n = 25)
Zaffagnini et al. ³³	2008	Italy	Hamstring $(n = 37)$	Marcacci hamstring plus lateral sling (n = 35)

✓ AFTER 2000 THE LET ABANDONED IN US



EUROPEAN EXPERIENCE CONTINUED

ANCIENT VS MODERN LET

'80-'90

- ✓ INVASIVE PROCEDURE
- ✓ Hard REHAB PROTOCOL
 - 3 MONTH CAST
 - NO WEIGHT-BEARING

GOOD OUTCOMES:

- PROMs
- Rotational control
- Persistent anterior laxity
- Early degenerative change in the lateral compartment

Vail AJSM 1992, Neyret Br J Sports Med 1994

In vivo kinematic and clinical analysis of isolated modified Lemaire anterolateral tenodesis in ACL deficient knee

Perelli S, Monllau JC et al. 2022 (Submitted)

PROSPECTIVE STUDY, 52 pts, >55yo

- 22 isolated LET / 30 first step of two-stage ACL Revision
- in vivo kinematic analysis of isolated LET to explore its ability to modify the stability of ACL deficient knees
- clinical outcomes

CONCLUSION

@ two years follow-up LET improves →

- kinematics of the ACL deficient knee
- subjective stability & function
- clinical outcomes

MY OPINION !

IN ACTIVE SENIORS CONSIDER LET ALONE

- NO BONE TUNNELS
- NO LIGAMENTIZATION TIME
- FASTER REHAB
- GOOD SUBJECTIVE AND LAXITY OUTCOMES

TAKE HOME MESSAGE

- **INCREASING INCIDENCE** OF > 50yo ACL TEAR AND RECONS
- SURGICAL TREATMENT PROVIDES BETTER OUTCOMES
- TRY TO SLOW DOWN OA NATURAL ONSET
- CONSIDER EXTRARTICULAR PROCEDURE ALONE

